Pentadiagonal alternating-direction-implicit finite-difference time-domain method for two-dimensional Schrödinger equation
نویسندگان
چکیده
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet’s boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.
منابع مشابه
An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملAlternating Implicit Block FDTD Method For Scalar Wave Equation
In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximu...
متن کاملA spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations
Based on the combined compact difference scheme, an alternating direction implicit method is proposed for solving two-dimensional cubic nonlinear Schrödinger equations. The proposed method is sixth-order accurate in space and second-order accurate in time. The linear Fourier analysis method is exploited to study the stability of the proposed method. The efficiency and accuracy of the proposed m...
متن کاملTime-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one- and multi-dimensional nonlinear Schrödinger equations
In this paper, we study the simulation of nonlinear Schrödinger equation in one, two and three dimensions. The proposed method is based on a time-splitting method that decomposes the original problem into two parts, a linear equation and a nonlinear equation. The linear equation in one dimension is approximatedwith the Chebyshev pseudo-spectral collocationmethod in space variable and the Crank–...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 185 شماره
صفحات -
تاریخ انتشار 2014